Hybrid BDI-POMDP Framework for Multiagent Teaming
نویسندگان
چکیده
Many current large-scale multiagent team implementations can be characterized as following the “belief-desire-intention” (BDI) paradigm, with explicit representation of team plans. Despite their promise, current BDI team approaches lack tools for quantitative performance analysis under uncertainty. Distributed partially observable Markov decision problems (POMDPs) are well suited for such analysis, but the complexity of finding optimal policies in such models is highly intractable. The key contribution of this article is a hybrid BDI-POMDP approach, where BDI team plans are exploited to improve POMDP tractability and POMDP analysis improves BDI team plan performance. Concretely, we focus on role allocation, a fundamental problem in BDI teams: which agents to allocate to the different roles in the team. The article provides three key contributions. First, we describe a role allocation technique that takes into account future uncertainties in the domain; prior work in multiagent role allocation has failed to address such uncertainties. To that end, we introduce RMTDP (Role-based Markov Team Decision Problem), a new distributed POMDP model for analysis of role allocations. Our technique gains in tractability by significantly curtailing RMTDP policy search; in particular, BDI team plans provide incomplete RMTDP policies, and the RMTDP policy search fills the gaps in such incomplete policies by searching for the best role allocation. Our second key contribution is a novel decomposition technique to further improve RMTDP policy search efficiency. Even though limited to searching role allocations, there are still combinatorially many role allocations, and evaluating each in RMTDP to identify the best is extremely difficult. Our decomposition technique exploits the structure in the BDI team plans to significantly prune the search space of role allocations. Our third key contribution is a significantly faster policy evaluation algorithm suited for our BDI-POMDP hybrid approach. Finally, we also present experimental results from two domains: mission rehearsal simulation and RoboCupRescue disaster rescue simulation.
منابع مشابه
Coordinating Teams in Uncertain Environments: A Hybrid BDI-POMDP Approach
Distributed partially observable Markov decision problems (POMDPs) have emerged as a popular decision-theoretic approach for planning for multiagent teams, where it is imperative for the agents to be able to reason about the rewards (and costs) for their actions in the presence of uncertainty. However, finding the optimal distributed POMDP policy is computationally intractable (NEXPComplete). T...
متن کاملMultiagent Teamwork: Hybrid Approaches
Today within the multiagent community, we see at least four competing methods to building multiagent systems: beliefdesire-intention (BDI), distributed constraint optimization (DCOP), distributed POMDPs, and auctions or game-theoretic methods. While there is exciting progress within each approach, there is a lack of cross-cutting research. This article highlights the various hybrid techniques f...
متن کاملA Hybrid POMDP-BDI Agent Architecture with Online Stochastic Planning and Plan Caching
This article presents an agent architecture for controlling an autonomous agent in stochastic environments. The architecture combines the partially observable Markov decision process (POMDP) model with the belief-desire-intention (BDI) framework. The Hybrid POMDP-BDI agent architecture takes the best features from the two approaches, that is, the online generation of reward-maximizing courses o...
متن کاملA Multiagent Framework to Animate Socially Intelligent Agents
This paper presents a multiagent framework designed to animate groups of synthetic humans that properly balance task oriented and social behaviors. The work presented in this paper focuses on the BDI agents and the social model integrated to provide socially acceptable decisions. The social model provides rationality, to control the global coordination of the group, and sociability, to simulate...
متن کاملA BDI Agent Architecture for a POMDP Planner
Traditionally, agent architectures based on the BeliefDesire-Intention (BDI) model make use of precompiled plans, or if they do generate plans, the plans do not involve stochastic actions nor probabilistic observations. Plans that do involve these kinds of actions and observations are generated by partially observable Markov decision process (POMDP) planners. In particular for POMDP planning, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Artif. Intell. Res.
دوره 23 شماره
صفحات -
تاریخ انتشار 2005